14,898 research outputs found

    Antisymmetric multi-partite quantum states and their applications

    Get PDF
    Entanglement is a powerful resource for processing quantum information. In this context pure, maximally entangled states have received considerable attention. In the case of bipartite qubit-systems the four orthonormal Bell-states are of this type. One of these Bell states, the singlet Bell-state, has the additional property of being antisymmetric with respect to particle exchange. In this contribution we discuss possible generalizations of this antisymmetric Bell-state to cases with more than two particles and with single-particle Hilbert spaces involving more than two dimensions. We review basic properties of these totally antisymmetric states. Among possible applications of this class of states we analyze a new quantum key sharing protocol and methods for comparing quantum states

    Steady-state entanglement in a double-well Bose-Einstein condensate through coupling to a superconducting resonator

    Get PDF
    We consider a two-component Bose-Einstein condensate in a double-well potential, where the atoms are magnetically coupled to a single-mode of the microwave field inside a superconducting resonator. We find that the system has the different dark-state subspaces in the strong- and weak-tunneling regimes, respectively. In the limit of weak tunnel coupling, steady-state entanglement between the two spatially separated condensates can be generated by evolving to a mixture of dark states via the dissipation of the photon field. We show that the entanglement can be faithfully indicated by an entanglement witness. Long-lived entangled states are useful for quantum information processing with atom-chip devices.Comment: 9 pages, 7 figures, minor revisio

    Using qualitative methods to evaluate mobile phone technology based nutrition and agriculture advisory services in Tanzania and Ghana

    Get PDF
    This brief focuses on the qualitative component of the mNutrition evaluation which is being led by the Institute of Development Studies. Changing human behaviours is complex and influenced by individual, societal, political, economic and environmental factors. The qualitative component helps to explore the complexity of these factors and how they may interact, facilitate or hinder behaviour change in response to the mNutrition intervention.Department for International Development (DFID

    Stable, inflatable life raft for high seas rescue operations

    Get PDF
    Raft is easily deployed and highly maneuverable in water. It has false bottom of water ballast containers attached to underside, making it exceptionally stable platform from which swimmers can operate. Raft is attachable to external moorings

    Directional correlations in quantum walks with two particles

    Get PDF
    Quantum walks on a line with a single particle possess a classical analogue. Involving more walkers opens up the possibility of studying collective quantum effects, such as many-particle correlations. In this context, entangled initial states and the indistinguishability of the particles play a role. We consider the directional correlations between two particles performing a quantum walk on a line. For non-interacting particles, we find analytic asymptotic expressions and give the limits of directional correlations. We show that by introducing delta-interaction between the particles, one can exceed the limits for non-interacting particles

    Dissipation control in cavity QED with oscillating mode structures

    Get PDF
    We demonstrate how a time-dependent dissipative environment may be used as a tool for controlling the quantum state of a two-level atom. In our model system the frequency and coupling strength associated with microscopic reservoir modes are modulated, while the principal features of the reservoir structure remain fixed in time. Physically, this may be achieved by containing a static atom-cavity system inside an oscillating external bath. We show that it is possible to dynamically decouple the atom from its environment, despite the fact that the two remain resonant at all times. This can lead to Markovian dynamics, even for a strong atom-bath coupling, as the atomic decay becomes inhibited into all but a few channels; the reservoir occupation spectrum consequently acquires a sideband structure, with peaks separated by the frequency of the environmental modulation. The reduction in the rate of spontaneous emission using this approach can be significantly greater than could be achieved with an oscillatory atom-bath detuning using the same parameters

    Astroglial-axonal interactions during early stages of myelination in mixed cultures using in vitro and ex vivo imaging techniques

    Get PDF
    <b>Background</b><p></p> Myelination is a very complex process that requires the cross talk between various neural cell types. Previously, using cytosolic or membrane associated GFP tagged neurospheres, we followed the interaction of oligodendrocytes with axons using time-lapse imaging in vitro and ex vivo and demonstrated dynamic changes in cell morphology. In this study we focus on GFP tagged astrocytes differentiated from neurospheres and their interactions with axons.<p></p> <b>Results</b><p></p> We show the close interaction of astrocyte processes with axons and with oligodendrocytes in mixed mouse spinal cord cultures with formation of membrane blebs as previously seen for oligodendrocytes in the same cultures. When GFP-tagged neurospheres were transplanted into the spinal cord of the dysmyelinated shiverer mouse, confirmation of dynamic changes in cell morphology was provided and a prevalence for astrocyte differentiation compared with oligodendroglial differentiation around the injection site. Furthermore, we were able to image GFP tagged neural cells in vivo after transplantation and the cells exhibited similar membrane changes as cells visualised in vitro and ex vivo.<p></p> <b>Conclusion</b><p></p> These data show that astrocytes exhibit dynamic cell process movement and changes in their membrane topography as they interact with axons and oligodendrocytes during the process of myelination, with the first demonstration of bleb formation in astrocytes

    Life raft stabilizer

    Get PDF
    An improved life raft stabilizer for reducing rocking and substantially precluding capsizing is discussed. The stabilizer may be removably attached to the raft and is defined by flexible side walls which extend a considerable depth downwardly to one another in the water. The side walls, in conjunction with the floor of the raft, form a ballast enclosure. A weight is placed in the bottom of the enclosure and water port means are provided in the walls. Placement of the stabilizer in the water allows the weighted bottom to sink, producing submerged deployment thereof and permitting water to enter the enclosure through the port means, thus forming a ballast for the raft

    Thermalization of Squeezed States

    Full text link
    Starting with a thermal squeezed state defined as a conventional thermal state based on an appropriate hamiltonian, we show how an important physical property, the signal-to-noise ratio, is degraded, and propose a simple model of thermalization (Kraus thermalization).Comment: 7 pages, 1 table, 1 figure. Presented at ICSSUR 2005, Besancon, Franc
    corecore